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Time-scale matching in the response of a leaky integrate-and-fire neuron model
to periodic stimulus with additive noise

T. Shimokawa, K. Pakdaman, and S. Sato
Department of Human and System Science, Graduate School of Engineering Science, Osaka University,

Toyonaka 560-8531, Osaka, Japan
~Received 30 September 1998!

We study the response of a leaky integrate-and-fire neuron model to subthreshold periodic stimulus with
additive noise. Previous works have shown that the interspike interval distribution at the modulation period
goes through a maximum with increasing either the noise intensity or the period. This maximum appears when
the stimulation period is close to the mode of the interspike interval distribution in the absence of the modu-
lation. This phenomenon is called time-scale matching. In this paper, we examine time-scale matching in the
response to periodic signals with and without resetting of the input phase at each firing. For the case without
resetting, we calculate the phase distribution by iterating a stochastic phase transition operator. This operator
extends the phase transition curve commonly used in the analysis of the response of deterministic oscillators to
periodic stimulation. We also examine the dependence of the time-scale matching on the input amplitude.
Furthermore, we consider the response of the system in the frequency domain. It is known that the signal-to-
noise ratio derived from the power spectral density goes through a maximum with increasing noise intensity.
We show that the signal-to-noise ratio also has a hump as a function of the period, and discuss its relation to
time-scale matching. This work helps in clarifying conditions whereby noise can improve the detection of a
weak periodic signal by neurons through time-scale matching.@S1063-651X~99!07703-X#

PACS number~s!: 87.10.1e, 07.05.Mh
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I. INTRODUCTION

Experimental and theoretical investigations have sho
that noise of appropriate amplitude can enhance signal tr
mission in nervous systems, for instance, by linearizing
response to suprathreshold stimulation~for a review, see@1#!,
by increasing input-output correlation, coherence, a
transinformation in the presence of weak aperiodic stimu
tion @2#, or enabling the detection of subthreshold perio
signals@3,4#. The last phenomenon is one form of stochas
resonance~SR! @5,6#, i.e., ‘‘a phenomenon that is manifest
nonlinear systems whereby generally feeble input inform
tion ~such as a weak signal! can be amplified and optimize
by the assistance of noise’’@6#.

SR has been thoroughly studied in noisy weakly perio
cally modulated systems in a double-well potential~for re-
views, see@5,6#, and references therein!. It has been sug-
gested that SR can occur through matching between the
of the noise-induced hopping between the two stable st
and the modulation period~for a discussion of this issue, se
@5–7#!.

Some neurons in nervous systems operate as bistabl
vices, so that the aforementioned studies on SR can be
rectly extended to them. However, under many circu
stances, including some of the experiments described in@3#,
sensory neurons are not bistable, but rather excitable, tha
they have a single resting state, small perturbations of
state are damped, while large stimulations evoke an ac
potential followed by a return to the stable state. Therefo
in order to get a better understanding of the mechani
underlying SR-like phenomena in nervous systems, the
sults obtained in the case of bistable systems need to
reformulated and extended to excitable systems@8#. The pur-
PRE 591063-651X/99/59~3!/3427~17!/$15.00
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pose of this work is to examine this issue in a prototype of
excitable system. More precisely, we investigate whet
time-scale matching enhances signal detection in the le
integrate-and-fire model~LIFM !. This model captures essen
tial aspects in neuronal behavior, namely, excitability
leading to an all-or-none response—and refractorines
progressive recovery of excitability following a discharg
Therefore, the study of the dynamics of the LIFM can help
elucidating the mechanisms underlying the beneficial ro
played by noise in signal transmission and processing in
vous systems.

The study of SR-like phenomena in the LIFM was ini
ated in@9,10#. In @9#, Bulsaraet al. studied noise-enhance
detection of a weak periodic signal in the LIFM. More pr
cisely, they showed that the peak heights of the intersp
interval ~ISI! distribution go through a maximum with in
creasing the modulation periodT or noise intensityD thereby
exhibiting ‘‘resonance’’ phenomena. Furthermore, th
showed that both humps occur whenT is close to the mode
of the ISI distribution without modulation, thus providin
strong evidence for time-scale matching in these resonan

In this paper, we extend their results by systematica
investigating the influence of noise intensity, modulation p
riod, and amplitude on time-scale matching. In this way,
shed light on the role of subthreshold modulation charac
istics, and we determine conditions under which time-sc
matching occurs. Furthermore, the results in@9# were ob-
tained under the assumption that the input phase is reset
each discharge. Physiologically, this may correspond to
dogenous membrane potential modulation@11#. It can also
provide an approximation for exogenous forcing, i.e., wh
the input phase is not reset. We propose a method for
computation of the distribution of discharge phases when
input phase is not reset. Our method relies on the exten
3427 ©1999 The American Physical Society



o
s
tr
to
em
ce

e
-
pe
ey

t
is
m
m
th
th
od
c

o
z
.
a
e

a

n
an
ol

ge

n
th
b
n

tt

t is
e is
as

fers
t
th
min-
in

ry
c-
can

ed

ly
ich

rge

3428 PRE 59T. SHIMOKAWA, K. PAKDAMAN, AND S. SATO
of the phase transition curve commonly used in the study
periodically forced deterministic oscillations to a noisy sy
tem. Using the phase distribution, we compute the ISI dis
bution of the exogenously forced LIFM. This allows us
compute conditions for time-scale matching in this syst
and compare them with those in the endogenously for
LIFM.

The study in@9# deals mainly with the response of th
LIFM in the time domain. In@10#, Plesser and Tanaka ex
amined the response of the noisy LIFM to subthreshold
riodic forcing in the frequency domain. To this end, th
computed the signal-to-noise ratio~SNR! from the power
spectral density~PSD! of the spike train, and showed tha
this quantity was maximized at some intermediate no
level. In this work, we investigate whether this maximu
results from time-scale matching. Furthermore, in the sa
way as in the time domain, we examine the influence of
modulation period and amplitude to determine whether
SNR is also maximal at some appropriate forcing peri
Finally, we compare the results in the time and frequen
domains.

This paper is organized as follows. In Sec. II, we intr
duce the LIFM. In Sec. III, we propose methods to analy
the response with and without resetting of the input phase
Sec. IV, we examine the time-scale matching and investig
the influence of the modulation amplitude. In Sec. V, w
investigate the response of the system in frequency dom
Finally, we discuss our results in Sec. VI.

II. LEAKY INTEGRATE-AND-FIRE NEURON MODEL

A. Deterministic model

The LIFM describes the electric activity of a neuro
membrane. It is composed of a resistance and a capacit
in parallel, together with a firing threshold. The subthresh
dynamics of the membrane potentialV(t) is described as
follows:

C
dV~ t !

dt
52

V~ t !2V`

R
1I ~ t !, V~ t !,S0

~2.1!

V~ t1!5V0,S0 if V~ t !5S0,

whereR is the total membrane resistance,C the total mem-
brane capacity,V` the resting potential,V0 the resetting po-
tential, I (t) the stimulus current, andS0 the constant firing
threshold. This model generates a discharge whenV exceeds
S0, which is described by an impulse. Following a dischar
V is immediately reset toV0 .

WhenV`.S0, the LIFM discharges periodically, even i
the absence of inputs. In this respect, its dynamics in
presence of periodic modulation and additive noise resem
those of the perfect integrator that have been thoroughly a
lyzed in @12#. In the following, we assume thatV`,S0, so
that in the absence of inputs, the membrane potential se
at V` , and there are no discharges.

When the input is a sinusoidal currentI (t)5I 0
1I 1 sin(Vt1u), the solution of Eq.~2.1! is given by
f
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Vmod~ t !5V0e2~ t2t8!/t1mt~12e2~ t2t8!/t!

1
At

A11~Vt!2
@sin~Vt1u2w!

2e2~ t2t8!/t sin~u2w!#, ~2.2!

where t5RC is the membrane time constant,m5(V` /t)
1(I 0 /C), w5arctan(Vt), t8 (<t) is the last time the unit
fired, andA5I 1 /C. We refer toA as the modulation ampli-
tude, and denote byT52p/V the modulation period. De-
pending on the values of these two parameters, the inpu
either subthreshold or suprathreshold. When the amplitud
large enough to generate firing, the stimulus is referred to
suprathreshold. Conversely, subthreshold modulation re
to the case whereA is small, so that the LIFM does no
display sustained firing. In the following, we deal only wi
subthreshold inputs. The various responses of the deter
istic LIFM to sinusoidal stimulation have been described
@13#.

B. Stochastic model

When a neuron receives infinitesimally small excitato
and inhibitory inputs via corresponding synaptic conne
tions, subthreshold dynamics of the membrane potential
be described as follows~for reviews, see@14#!:

dV~ t !5S 2
V

t
1m Ddt1A2DdW~ t !, V~ t !,S0

~2.3!

whereD represents the intensity of the input noise andW(t)
the standard Wiener process.V(t) is an Ornstein-Uhlenbeck
~OU! stochastic process.

In the presence of a sinusoidal input, Eq.~2.3! becomes

dV~ t !5F2
V

t
1m1A sin~Vt1u!Gdt1A2DdW~ t !,

~2.4!
V~0!5V0 , V~ t !,S0.

V is no longer an OU process. However, usingVmod of Eq.
~2.2!, we can change variables according to

X~ t !5V~ t !2Vmod~ t !, Smod~ t !5S02Vmod~ t !. ~2.5!

Thus, Eq.~2.4! is transformed into

dX~ t !52
X

t
dt1A2DdW~ t !,

~2.6!
X~0!50, X~ t !,Smod~ t !.

Equation~2.6! shows that the transformed variableX(t) is an
OU process. In other words, the periodically modulat
LIFM with constant threshold is equivalent to the LIFM
without membrane modulation but with an appropriate
time-dependent threshold. This is illustrated in Fig. 1, wh
shows the behavior of the original membrane potential~up-
per panel! together with the transformed one~lower panel!.
The advantage of this transformation is that the discha
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times of the model can be derived from the first-passage t
of an OU process through a smooth boundary. This is
tailed in the following.

The timet at whichX reachesSmod for the first time given
X(0)50 is called the first-passage time (tFP):

tFP5 inf$t:X~ t !.Smod~ t !uX~0!50,Smod~0!%. ~2.7!

tFP is a random variable with probability density functio
~PDF! g(Smod(t),tuu) satisfying the following equation@14#:

p~x,tu0,0!5E
0

t

g„Smod~t!,tuu…

3p„x,tuSmod~t!,t…dt

~x.Smod~ t !, Smod~0!.0!, ~2.8!

wherep(x,tuy,s) is the transition PDF of the processX(t)
and satisfies the Fokker-Planck equation@14#:

]p

]t
52

]

]xF2
x

t
pG1D

]2p

]x2
. ~2.9!

The solutionp(x,tuy,s) of Eq. ~2.9! is given by

p~x,tuy,s!5
1

A2ps t,s

expF2
~x2ye2~ t2s!/t!2

2s t,s
2 G ,

~2.10!

s t,s
2 52Dt~12e22~ t2s!/t!. ~2.11!

Equation~2.8! is a Volterra integral equation of the first typ
with respect tog, which cannot be solved analytically exce
for some special boundariesSmod(t). A special attention
should be paid for numerical computation of the solutio

FIG. 1. Schematic transformation of the variables. Upper pa
corresponds to Eq.~2.4! and lower panel to Eq.~2.6!. Dotted curve
in upper panel is the membrane potential without noise, corresp
ing to Vmod(t) in Eq. ~2.2!. Abscissae: time in arbitrary units; ord
nates: voltage in arbitrary units.
e
e-

,

because the functionp„x,tuSmod(t),t… is singular ast→t.
Giorno et al. @15# proposed a numerical procedure for sol
ing Eq. ~2.8! for a smooth time-dependent boundary. W
used the method in order to perform the numerical compu
tion for the tFP PDF.

III. COMPUTATION OF THE ISI DISTRIBUTION

Following @11#, we classify inputs as endogenous and e
ogenous depending on whether the input phase is reset
fixed value after each discharge or not. To our knowled
previous studies have mainly dealt with the endogen
modulation. In the following two subsections, we descri
both cases successively and propose numerical method
calculate the interspike interval PDF for each of them.

A. Endogenous periodicity

When the input phase is reset to a fixed value after e
discharge~upper panel Fig. 2!, the ISI distribution is given
by thetFP PDF. This distribution depends on the initial pha
u as illustrated in Fig. 3. Usually,u is taken asp/2 because,
for this value, the ISI distribution is close to that of th
corresponding exogenous forcing, in the sense that the p
of the ISI distribution are situated close to the multiples
the modulation period. Hence, for the endogenous perio
signal, we describe the ISI distribution asg(tup/2).

B. Exogenous periodicity

When the periodic signal is exogenous, the membr
potential and the threshold are reset after the discharge
not the phase of the external input~lower panel Fig. 2!.

el

d-

FIG. 2. Schematic spike train and corresponding current
both endogenous~upper panel! and exogenous signal~lower panel!.
For the exogenous signal, the phase of the input current is not r
after each firing. The phaseun of the input atnth firing and the
interspike intervaltn between (n21)th andnth firing are random
variables, and they have corresponding probability density funct
hn(u) and i n(t), respectively. Abscissae: time in arbitrary unit
ordinates of the current: in arbitrary units; ordinates of the sp
train: voltage in arbitrary units.
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Hence, the phase of the signal at the firing is a random v
able. In this subsection, we propose a method to calculate
PDF of this variable and derive the ISI distribution from i

The initial phaseu completely determines the time cour
of the boundarySmod(t) in the tFP PDF g„Smod(t),tu0… de-
fined by Eq.~2.8!. Hence, we denote the PDF byg(tuu) for
the sake of convenience. Also let us denote

f ~fuu!5
1

V (
k50

`

gS kT1
f2u

V Uu D , ~3.1!

whereg(tuu)50 if t,0. Convergence of this series is e
sured by the fact that for larget, g can be bounded by expo
nentials@16#. The function f (fuu) is the PDF of the next
firing phasef given the last discharge phaseu, and satisfies
*0

2p f (fuu)df51, f (fuu).0.
Let hn(u)(0<u,2p) be the PDF of the phase at th

time of nth firing, n51,2, . . . . Then,hn(f) is obtained by
the following equation:

hn~f!5E
0

2p

f ~fuu!hn21~u!du, n51,2, . . .

[Phn21~f!, ~3.2!

whereh0(u) is the PDF of the initial phaseu0 and satisfies
h0(u).0, *0

2ph0(u)du51. We callP the stochastic phas
transition operator~SPTO!. It is a Markov operator with ker-
nel f (fuu). A similar operator was used in the analysis
stochastic phase locking@17# and linearization by noise@18#.
Figure 4 shows examples off (fuu) for four different noise
intensitiesD.

Applying the SPTO iteratively to the PDFh0 of the initial
phase, we can obtainhn as

hn5Phn215P~Phn22!5•••5P nh0 . ~3.3!

Since

FIG. 3. First passage time probability density functiong(tuu)
for four different initial phasesu50 rad, p/2 rad, p rad, and
2p rad. Abscissa: first passage time in milliseconds; ordina
probability density in kilohertz. Parameters:m50.1 V/s, A
50.05 V/s, t51/0.006 ms~we chose these values to compare o
results with those of Bulsaraet al. in @9#!, T5300 ms,S0520 mV,
D50.2 (mV)2, V050 mV.
ri-
he

f

E
0

2p

inf
u

f ~fuu!df.0, ~3.4!

$P n% is asymptotically stable@19#, that is, there exists a
unique density functionh` such thatPh`5h` and

:

r

FIG. 4. The kernelf (fuu) of the SPTOP for different noise
intensities,D50.02 ~mV!2 ~upper panel!, 0.2 ~mV!2 ~second panel
from top!, 1 ~mV!2 ~third panel from top!, and 2 ~mV!2 ~lower
panel!. Axis of u: the phase of the input at the previous firing,
radians. Axis off: the phase of the input at the next firing, i
radians. Axis off (fuu): the probability density function of the nex
firing phasef given the previous firing phase isu, in kilohertz.
Parameters:m50.1 V/s, A50.05 V/s,t51/0.006 ms,T5300 ms,
S0520 mV, V050 mV.
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lim
n→`

uuP nh02h`uu50 for every h0 . ~3.5!

We refer toh`(u) as phase distribution. It corresponds to t
normalized cycle histogram used by neurophysiologists
analyze experimental data. Figure 5 showsh` for four dif-
ferent values ofD.

The PDF of the time intervaltn between (n21)th andnth
spikes,i n(t), is given by

i n~ t !5E
0

2p

g~ tuu!hn21~u!du, n51,2, . . . ~3.6!

and i `(t), the ISI distribution, satisfies

i `~ t !5E
0

2p

g~ tuu!h`~u!du. ~3.7!

Throughout this work, we computedh` by iteratingP and
then obtainedi ` using Eq.~3.7!. Comments for numerica
calculation are provided in the Appendix.

In order to allow a better comparison with prior studie
results shown in the figures were all computed with the sa
parameters as@9#. We also performed similar numerical in
vestigations with other parameter sets, including those
@10#. But, these are not illustrated through the figures, as
main conclusions remain unchanged.

IV. TIME-SCALE MATCHING IN TIME DOMAIN

Bulsara et al. @9# showed that, for the LIFM receiving
subthreshold periodic modulation, the height of the ISI d
tribution at the modulation period goes through a maxim
with increasingD, indicating that noise of intermediate am
plitude can improve signal transmission. They observed
the same quantity also goes through a maximum with
creasingT. They showed that at both maxima, the time sc
of the noise-induced firing matched the modulation period
the sense that~1! in the former case whereT was fixed andD
varied, the modetm(D* ) of the ISI distribution in the ab-
sence of modulation~i.e., A50) satisfiedtm(D* ).T at the
optimal noise levelD* , ~2! while in the latter case, whereD
was fixed andT varied, the optimal modulation periodT*

FIG. 5. Phase distributionh`(u) for D50.02 ~mV!2, 0.2~mV!2,
1 ~mV!2, and 2 ~mV!2. Abscissa: the phaseu of the input at the
firing, in radians; ordinate: probability density in (radian)21. Pa-
rameters:m50.1 V/s, A50.05 V/s, t51/0.006 ms,T5300 ms,
S0520 mV, V050 mV.
o
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n

satisfiedT* .tm(D), whereD* ~or T* ) is the optimal value
which gives the hump of the height of the ISI distribution
T while varyingD ~or T) for fixed T ~or D).

In this section, we examine consecutively the influence
the input amplitude on these two conditions. For each
consider both situations where the periodic signal is end
enous and exogenous.

A. For fixed D

Let us start with the time-scale matching that takes pl
when the modulation periodT is varied, while the noise am
plitudeD is kept constant. For an endogenous signal, the
distribution isg(tup/2) as mentioned before. Figure 6~upper
panel! is an example of the ISI distribution for four differen
T. The abscissa is normalized by the modulation period
facilitate the comparison. For smallT ~thick solid line!, the
ISI distribution displays several peaks which are close
multiples of T ~not all are shown!. This is a signature of
skipping: discharges occur mainly at a given phase, but
necessarily at every period. For short periods, the peak atT is
smaller because the LIFM does not have time to reco
from the refractory period within one stimulation period. A
T increases, so does the height of the ISI distribution pea
T. At the same time, a new peak at a shorter time appe
This peak is due to the fact that, for slow modulation, t
LIFM generates a burst of tightly packed spikes every ti
the input approaches its maximal value. Therefore the
charge train is a succession of bursts separated by inte
close to the modulation period. The intraburst ISIs are cl
to the refractory period. The number of discharges with
each burst varies from one burst to another, but steadily
creases with the period. This lengthening of the burst
plains the increase of the size of the first peak in the
distribution, as the peak height atT progressively decreases
Overall, this leads to the hump shaped dependence ofg(T)
on T illustrated in Fig. 6~third panel from top!. Similar
humps exist forg(kT), i.e., at multiples of the modulation
period. These are shown in the three-dimensional~3D! rep-
resentation of the ISI distribution as a function of both t
ISI duration and the periodT in Fig. 7 ~upper panel!.

When the input is exogenous, i.e., its phase is not re
the overall dependence of the ISI distribution onT is the
same. Figure 6~second and fourth panels from top! and Fig.
7 ~lower panel! illustrate this. The notable difference is th
the peaks in the ISI are less marked for the exogenous sig
This results from the fact that the phase distribution ha
nonzero width. This difference leads to a smaller optim
period T* @275 ms against 300 ms in Fig. 6~second and
fourth panels from top!#.

Perfect time-scale matching occurs whenT* is equal to
the modetm of the ISI distributionwithout modulation for
fixed D, that is,

T* 5tm~D ! for fixed D while changingT, ~4.1!

whereT* is the optimal value ofT that maximizes the peak
of the ISI distribution atT @i.e., g(T) or i `(T) for endog-
enous and exogenous forcing, respectively#. Figure 8~upper
panel! showstm(D) versusT* for several modulation am
plitudesA, that is to say, for each value ofD, the optimal
periodT* is plotted againsttm(D). The graph forA50.1 is
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FIG. 6. Two upper panels: ISI distribution for endogenous~up-
per panel! and exogenous~second panel from top! signals for four
different modulation periodsT. Abscissae: ISI normalized by th
periodT ~dimensionless!; ordinates: probability density in kilohertz
Two lower panels: the height of the ISI distribution atT for endog-
enous~third panel from top! and exogenous~lower panel! signals.
T* represents the optimal period that maximizes the height of
ISI distribution atT. Abscissae: the periodT in milliseconds; ordi-
nates: probability density in kilohertz. Parameters:m50.1 V/s,
t51/0.006 ms, S0520 mV, V050 mV, D50.2 ~mV!2, and A
50.05 V/s.
interrupted aboutT* 5200 ms. This is because larger pe
ods lead to suprathreshold modulation. Equation~4.1!, which
characterizes time-scale matching, corresponds to the di
nal. This holds forA50, but not for larger values ofA, the
graphs ofT* move away from the perfect matching. The fa
that the curve is on the diagonal forA50 stems from the
definition of T* .

As A is increased the curves depart from the perf
matching, showing thatT* is larger thantm(D). This influ-
ence of the modulation amplitude is independent of the
setting strategy as attested by the similarity between the
upper panels in Fig. 8 showing, respectively, the endogen
and the exogenous cases.

The fact that time-scale matching deteriorates for la
amplitudes andT* suggests that this may be due to the d
pendence of membrane potential oscillation amplitude on
modulation period. To account for this effect, we adjust
the value ofA, the modulation amplitude, so as to keep t
value of A85tA/A11(Vt)2, the effective oscillation am-
plitude, constant whileT was tuned to obtain maximal re
sponse. In this way, for each value of the noise amplitudeD
and effective modulation amplitudeA8, we obtained a new
optimal periodT* that maximized the ISI distribution atT.
The two lower panels in Fig. 8 show the graphs fortm(D)
versusT* for endogenous and exogenous periodic stimu
tion. In the former, perfect time-scale matching is achiev
for all effective amplitudes, as all curves are superimpo
on the diagonal. In the latter, the same holds for lowA8.
However, at largerA8, the optimal periodT* is smaller than
tm(D). This effect is more pronounced at largetm(D), i.e.,
low noise levels.

Bulsaraet al. proposed an approximatetFP PDF using the
method of images. The two upper panels of Fig. 9 sh
time-scale matching using their expression†Eq. ~16! in @9#‡
for the ISI distribution of endogenous periodic signal. Co
parison of these results to Fig. 8~first and third panels from
top! shows that the main properties of the time-scale mat
ing are preserved under this approximation. For instance,

e

FIG. 7. Three-dimensional representations of the ISI distribut
~in kilohertz! as a function of the normalized ISI~dimensionless!
and the periodT in milliseconds for endogenous~upper panel! and
exogenous~lower panel!. The parameters are the same as in Fig
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FIG. 8. Time-scale matching for fixedD. The optimal periodT*
that maximizes the height of the ISI distribution at the modulat
period T for a given value ofD is represented against the mod
tm(D) of the ISI distribution in the absence of modulation. First a
third panels from top correspond to the endogenous signals w
second and fourth panels from top are those of exogenous sig
The graphs in the two upper panels showT* for four different
values ofA, those in the two lower panels show the same quan
for four different values ofA85At/A11(Vt)2. Abscissae: the
modetm(D) of the ISI distribution without modulation in millisec
onds. Largetm corresponds to low noise intensity. Ordinates: t
optimal valueT* in milliseconds. All parameters exceptD and A
are the same as in Fig. 6.
ile
ls.

y

FIG. 9. Time-scale matching calculated by the method of
images@9#. Periodic signal is considered as endogenous, so the
distribution is g(tup/2). Two upper panels: abscissae: the mo
tm(D) of g(tup/2) without modulation, in milliseconds; ordinates
the optimal valueT* in milliseconds, which gives a maximum o
g(Tup/2) while changingT for fixed D. We plot howT* changes
while varying tm(D) ~i.e., D) for fixed A in upper panel andA8
5At/A11(Vt)2 in the second panel from top. Two lower pane
Abscissae:T in milliseconds; ordinates: the modetm(D* ) of the ISI
distribution without modulation, in milliseconds.D* is the noise
intensity which gives a maximum ofg(Tup/w) while changingD
for fixed T. We plot howtm(D* ) ~i.e., D* ) changes while varying
T for fixed A in third panel from top andA85At/A11(Vt)2 in
lower panel. Parameters:m50.1 V/s, t51/0.006 ms,S0520 mV,
V050 mV.
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graphs for fixedA8 are close to parallel lines, and mov
away from the diagonal line with increasingA or A8. Fur-
thermore, the directions of the changes are similar to th
for Fig. 8 except in the upper panel of Fig. 9 at low noi
levels, where the approximation underestimates the valu
T* .

B. For fixed T

The previous results were concerned with the match
for a givenD as T is changed. Here, we consider the co
verse situation wherebyT is kept constant whileD is varied.
Interestingly, the qualitative changes that take place in
ISI distribution as the noise intensityD is increased are simi
lar to those described in the preceding section whenT was
increased. As shown in the two upper panels of Fig. 10
both endogenous and exogenous forcing, low noise levels
associated with skipping with peaks at multiples of t
modulation period. As the noise level is increased the pea
T first grows and then decays as the noise-dominated fi
with short intervals takes over. The two lower panels in F
10 illustrate the respective graphs of the ISI distribution aT
as the noise is increased. Again both curves are hump sh
with the exogenous signal evoking the smaller maxim
value. The corresponding optimal noise levelsD* are close
to one another. The fact that the responses at multiplesT
also go through maxima asD is increased can be seen in th
three-dimensional representations in Fig. 11. These res
together with the similar description given in the preced
section corroborate the findings in@9#, and show that phas
resetting does not introduce important changes in the
sponse of the system.

Similarly to the preceding section, we examine whethe
the optimal noise levels that maximize the response of
system there is a matching between the time scales. Le
denote byD* the optimal noise amplitude which maximize
g(Tup/2) or i `(T), and bytm(D* ) the mode of the corre
sponding ISI distribution in the absence of modulatio
Time-scale matching occurs when we have the relation

tm~D* !5T for fixed T while changingD. ~4.2!

The two upper panels in Fig. 12 show the graphs ofT versus
tm(D* ) for several modulation amplitudes for endogeno
and exogenous forcing, respectively. The graph forA50 is
far from the diagonal line. Therefore Eq.~4.2! is not satisfied
for A50 or for smallA because the ISI distribution atT @i.e.,
g(T) or i `(T)# varies continuously withA. In other words,
for this range ofA, the modetm of the ISI distribution for
D5D* is not equal toT. The reason for this is that at ver
weak modulation amplitudes, the periodicity of the input
not reflected in the ISI distribution, i.e., there are no mark
peaks at the multiples ofT. Therefore the value of the IS
distribution atT is not in the vicinity of a clearly defined
local maximum. For a given signal amplitudeA, the situation
improves at largeT because the corresponding effective a
plitudeA8 is large, so that the periodicity of the input affec
the discharge pattern. For the same reason, the curves
proach the diagonal asA is increased: the optimal noise lev
moves closer to the perfect matching condition. When
modulation amplitudeA is adjusted to account for the depe
dence ofA8 on T, the distance between the graph oftm as a
se
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function ofT and the diagonal varies less withT even though
there is still a slight improvement at largerT. The line for
each level ofA8 runs almost parallel to the diagonal. How
ever, unlike Fig. 8~third panel from top!, these are not su

FIG. 10. Two upper panels: ISI distribution for endogenous~up-
per panel! and exogenous~second panel from top! signals for four
different noise intensitiesD. Abscissae: ISI in milliseconds; ordi
nates: probability density in kilohertz. Two lower panels: the heig
of the ISI distribution atT for endogenous~third panel from top!
and exogenous~lower panel! signals.D* represents the optima
noise that maximizes the height of the ISI distribution atT. Abscis-
sae: the noise intensityD in ~millivolts!2; ordinates: probability
density in kilohertz. Parameters:m50.1 V/s, t51/0.006 ms,S0

520 mV, V050 mV, T5300 ms, andA50.05 V/s.
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perimposed. As expected, the distance between the lines
the diagonal is smaller at largerA8. With increasingA8, the
distance between the membrane potentialV at T and the
threshold S decreases. Consequently,D* decreases and
tm(D* ) increases. Hence, the graph moves towards the d
onal line with increasingA8.

The two lower panels of Fig. 9 show that the method
images captures well the discrepancy between the pe
matching and the actual value oftm(D* ) at low amplitudes,
and the progressive movement of the lines towards the d
onal as the amplitude or the period are increased. Here a
compared to Fig. 12~first and third panels from top!, this
approximation overestimates the value oftm(D* ) ~i.e., un-
derestimatesD* ) at large modulation periods and amp
tudes.

V. TIME-SCALE MATCHING IN FREQUENCY DOMAIN

Following @9,10#, we assume that the signal is endo
enous, that is, the phase of the sinusoidal signal is reset to
same valueu0 after each discharge. Hence, the discha
times of the model form a renewal point process, i.e., th
are independent and identically distributed. This allows us
compute the power spectral density of the spike train fr
the ISI distribution according to@10,12#

P~v!5
1

p^t&S 11
g̃~v!

12g̃~v!
1

g̃~2v!

12g̃~2v!
D , ~5.1!

where^t& is the meantFP and

g̃~v!5E
0

`

g~ t !exp@ ivt#dt.

For largev, the PSD stabilizes at 1/(p^t&). Additionally,
when the spike train is the Poisson impulse noise with
rameter 1/̂t&, the PSD is flat and equal to 1/(p^t&) for all v.
This suggests that considering the quantity F~v!

FIG. 11. Three-dimensional representations of the ISI distri
tion ~in kilohertz! as a function of ISI in milliseconds and nois
intensityD in ~millivolts!2 for endogenous~upper panel! and exog-
enous~lower panel!. The parameters are the same as in Fig. 10
nd
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FIG. 12. Time-scale matching for fixedT. tm(D* ) ~the mode of
the ISI distribution without modulation at the optimal noiseD* that
maximizes the height of the ISI distribution at the modulation p
riod T) is represented against the periodT. First and third panels
from top correspond to the endogenous signals while second
fourth panels from top are those of exogenous signals. The gra
in the two upper panels showtm(D* ) for four different values ofA,
those in the two lower panels show the same quantity for f
different values ofA85At/A11(Vt)2. Abscissae: the periodT in
millisecond; ordinates: the modetm(D* ) of the ISI distribution
without modulation in milliseconds. All parameters exceptT andA
are the same as in Fig. 10.
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3436 PRE 59T. SHIMOKAWA, K. PAKDAMAN, AND S. SATO
5p^t&P(v) can be advantageous for the comparison of
discharge patterns at various noise levels in the freque
domain@10#.

Figure 13 shows the ISI distribution and correspond
P(v) as well asF(v) as a function of noise intensityD in
the absence of periodic input. As the noise level is increa
shorter intervals become more likely, and the mode of the
distribution moves to the left. In the same way, the mode
the PSD~and consequently that ofF) moves right, showing
the increase in high frequencies.

In the time domain, we considered the mode of the
distribution in the absence of modulation as the appropr
time scale of the spontaneous firing. This choice follow
the results in@9# that showed that with this quantity, time
scale matching could occur when the response of the LI
was maximal. The upper panel of Fig. 14 illustrates th
possible candidates for the noise-induced firing time scal
the frequency domain, namely, the modetm ~thin solid line!
of the ISI distribution and the meantM ~dotted line! together

FIG. 13. Three-dimensional representations of the ISI distri
tion g(tup/2) in kilohertz~upper panel!, the PSDP(v) in kilohertz
~second panel from top! andF(v) ~dimensionless! ~lower panel! in
the absence of the modulation. Axes of ISI in upper panel: the IS
milliseconds. Axes ofD in all panels: the noise intensity in
~millivolts!2. Axes of v in the two lower panels: the angular fre
quency of the periodic stimulation current in radians per millis
ond. Parameters:m50.1 V/s, t51/0.006 ms, S0520 mV, V0

50 mV, A50 V/s.
e
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with tm
f 52p/vm

f ~thick solid line!, wherevm
f is the mode of

the PSD, or equivalently that ofF. There is a significant
difference between these quantities and we havetm

f ,tm

,tM . The lower panel of Fig. 14 shows the relation betwe
the modetm in time domain and the modetm

f in frequency
domain. In the following, we assume that the appropri
time scale in the frequency domain istm

f . Not only does this
choice seem natural in the frequency domain, but also,
the one that led to better matchings in all conditions. Furth
more, even in cases where time-scale matching was
achieved,tm

f was the closest of the three to the modulati
period.

To assess the periodicity of the spike train in the f
quency domain, we evaluated the peaks of the PSD anF
nearV, and examined how these changed when either
modulation period or the noise were varied. The maxim
value of F nearV is also referred to as the signal-to-noi
ratio ~SNR! @10#. The two quantities are defined as

PM5max$P~v!u0.93V,v,1.07V%, ~5.2!

S5max$F~v!u0.93V,v,1.07V%5p^t&PM . ~5.3!

SNR compares the value of the maximum of the PSD at
modulation frequency to its base level 1/(p^t&) at large fre-
quencies. However, as^t& varies when either the modulatio

-

in

-

FIG. 14. Upper panel: noise intensityD in ~millivolts!2 versus
the modetm ~thin solid line! of the ISI distribution and the meantM

~dotted line! together withtm
f 52p/vm

f ~thick solid line!, wherevm
f

is the mode of the PSD, or equivalently that ofF. We drew a
horizontal line atT52p/0.05, which is often used as modulatio
period in our results. Lower panel: the relation betweentm andtm

f .
Units of both axes in lower panel are milliseconds. ParameterS
520 mV, t51/0.006 ms,m50.1 V/s, V050 mV, A50 V/s.
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periodT or the noise intensityD is modified,PM and SNR
are not proportional when plotted against one of these
rameters. Yet, practically, we observed that^t& varies little
with T in the range of parameters that we considered, so
F and PSDs are almost proportional whenT was varied for
fixed D.

A. For fixed D

At first, we examine how the two quantitiesPM and SNR
change, when, for a fixedD, the modulation periodT is
varied. To our knowledge, previous studies have not de
mined whether this situation leads to a ‘‘resonancelike’’ ph
nomenon. As our aim is mainly to determine whetherPM
and SNR have a maximum when the modulation period
neartm

f , we limit our investigation to periods in the vicinit
of this value.

The left column in Fig. 15 shows how the ISI distribu
tions for three different modulation periods vary when t
input amplitude is increased fromA50 to A50.05. The ab-
scissae have been normalized by the modulation perio
facilitate the comparison between the different curves. T
middle column in the same figure represents the corresp
ing function F. The PSD is not shown since, as mention
before,^t& varies little withT so that there is little difference
between PSD andF. ForAÞ0, F displays a maximum at the
modulation frequency. The larger the modulation amplitu
the larger the corresponding peak inF. As the period is in-
creased, the peak height, i.e., the SNR, goes through a m
mum. The right column shows the variation of the pe
height as a function oftm

f /T. Time-scale matching occur
when the mode of the SNR coincides with one. This con
tion is satisfied atA50, as a consequence of the definition
tm

f . It still holds approximately for small modulation ampl
tudes~second panel from top in right column of Fig. 15!.
However, at larger modulations, the mode of the SNR mo
to values smaller than one. In other words, the SNR is m
mal at periods larger thantm

f .
The upper panel of Fig. 16 shows how the SNR chan

progressively with the input amplitude~the noise level is
different from that in Fig. 15!. The arrow indicatestm

f (D),
i.e., when the mode is situated at this point, there is per
matching. The difference between the optimal modulat
period and the value that would lead to perfect matching
also be seen in the lower panel of Fig. 16, which sho
tm

f (D) versus T* for various input amplitudes. In othe
words, for each noise levelD, this figure represents the op
timal modulation periodT* that maximizes the SNR again
the noise-related time scaletm

f (D). Perfect matching corre
sponds to the diagonal and is necessarily satisfied atA50.
However, at larger values ofA, the curves are situated abov
the diagonal, confirming that the optimal periods are lar
than tm

f (D), and furthermore that this difference increas
with the modulation amplitudes.

To check whether this amplitude-dependent effect is
lated to the membrane potential modulation amplitude,
same quantity, i.e., the optimal modulation period, was a
computed whenA was adjusted so as to maintainA8
5At/A11(Vt)2 constant. The results are represented in
middle panel of Fig. 16. For low modulation amplitudes, t
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SNR displays a hump forT always neartm
f (D) ~indicated by

the arrow!. However, this peak progressively disappears
the modulation amplitude is increased. Therefore, unlike
the time domain, perfect matching is not achieved whenA8
is held constant.

B. For fixed T

One of the most widely used criteria to characterize
has been that the peak of the PSD at the modulation pe
or an SNR derived from it is maximal at some intermedia
noise level. Bulsaraet al. examined this question in the pe
riodically modulated perfect integrator@12#. However, since
this system does not have a subthreshold regime, their re
cannot be extended directly to the LIFM. Plesser and Tan
@10# showed that the SNR of the periodically modulat
LIFM is maximal at some intermediate noise intensity.
this section, we evaluate the SNR over a wide range of
rameters and compute the optimal noise value that m
mizes this quantity with the one that would yield time-sca
matching.

Figure 17 and Fig. 18 show the ISI distributions~left col-
umn in Fig. 17!, the PSDs~right column in Fig. 17!, F ~left
column in Fig. 18!, and SNR~right column in Fig. 18! for
A50 ~first row from top!, A50.001, 0.01, and 0.05~from
second to fourth row!.

The main influence of noise on the PSD is to increase
base value at large frequencies, since large noise levels
to shorter mean ISÎ t& and hence large 1/^t&. Due to this
effect, PM increases monotonously for low modulation am
plitudes.

The graph ofD versusPM does not display any resonanc
~seeA50.05 in the lower panel of Fig. 19!. This phenom-
enon is also apparent in the upper panels of the right colu
of Fig. 17. At larger modulation amplitudes, the situation
different. The size of the peak at the modulation frequen
grows at low noise levels, goes through a maximal val
and then decays. The lowest panel in the right column of F
17 shows how the shape of the PSD changes in this proc
When the corresponding profile ofPM is plotted against
noise intensity~lower panel of Fig. 19!, it appears that in fact
the optimal noise level that maximizesPM is considerably
smaller than the one leading to time-scale matching~indi-
cated by the arrow!. Thus, this resonance phenomenon th
occurs at intermediate subthreshold modulation and
noise levels cannot be attributed to the matching between
time scales of the noise-induced firing and the modulat
period in the same way as resonances in the time dom
could be.

The influence of noise on the SNR differs from that
PM . Indeed, at low modulation amplitudes, the SNR exhib
a distinct hump, whereasPM was monotonously increasing

The right column of Fig. 18 representstm
f (D)/T versus

the corresponding value of the SNR. Perfect time-sc
matching occurs when the SNR has a maximum atT
5tm

f (D). Panels~b! and ~d! of Fig. 18 show that, at low
modulation amplitudes, the mode of the SNR is close to o
As the modulation amplitude is increased, this local ma
mum of the SNR disappears@Figs. 18~f!, 18~h!#. However, in
these regimes, the SNR exhibits another maximum at la
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FIG. 15. Left column: abscissa is the ISI normalized byT ~dimensionless!, and ordinate is the ISI distributiong(t) in kilohertz. Middle
column: abscissa is angular frequencyv normalized by modulation angular frequencyV of the stimulation~dimensionless!, and ordinate is
F(v) ~dimensionless!. Right column: abscissa istm

f 52p/vm
f normalized by the modulation periodT ~dimensionless!, and ordinate is the

SNR S(v) ~dimensionless! for fixed D50.6 mV while varyingT. vm
f is the mode of the PSD~or equivalentlyF) without modulation.

Modulation amplitude isA50 V/s ~first row from top!, A50.01 V/s~second row!, A50.03 V/s~third row!, andA50.05 V/s~fourth row!.
Parameters:S0520 mV, V050 mV, D50.6 ~mV!2, m50.1 V/s, t51/0.006 ms.
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tm
f (D), that is, at lower noise intensity. This second hum

cannot be attributed to time-scale matching as it occurs
small noise levels.

The two upper panels of Fig. 19 show the difference
the shape of the SNR at low and large~but still subthreshold!
modulation amplitudes. In both panels, the arrow indica
the noise level such thattm

f (D)5T. For A small, the SNR
has a hump for someD near the arrow. Still, the SNR a
lower noise levels can be larger than this local maximu
Another hump appears at a lower noise level. The optim

FIG. 16. The two upper panels: the SNR for fixedD
50.3 ~mV!2. Abscissae are modulation periodT in milliseconds.
Ordinates are SNRS ~dimensionless!. Every graph in the uppe
panel is depicted for fixedA, but in middle panel, A8
5At/A11(Vt)2 is fixed instead ofA. The arrow on the absciss
of both panels points totm

f 5136.5 ms. Lower panel: time-scal
matching for endogenous periodic signal in frequency domain.
scissa istm

f (D)52p/vm(D) in milliseconds.vm(D) is the value
which gives the maximum of the PSD as a function ofv for fixed
D. Ordinate is the optimal modulation periodT* in milliseconds. It
gives the maximum of the SNR as a function ofT ~or v) for fixed
D. Parameters:m50.1 V/s, t51/0.006 ms, S0520 mV, V0

50 mV.
r

s

.
al

value ofD that leads to this maximal value varies little wit
A, however, the peak value itself increases withA.

VI. DISCUSSION

We considered the response of the LIFM to subthresh
periodic stimulation in the presence of additive noise. W
used both time domain and frequency domain criteria for
evaluation of the response. Most of these criteria go thro
a maximum when either noise amplitude or modulation
riod are varied, thus displaying a ‘‘resonancelike’’ hum
shaped curve. We examined whether these maxima occu
when some characteristic time scale of noise-induced fir
matched the modulation period.

In the time domain, as in@9#, we used the mode of the IS
distribution in the absence of the modulation as the relev
time scale for the noise-induced firing. In the frequency d
main, we used the mode of the PSD.

These choices revealed time-scale matching for l
modulation amplitudes, in both time and frequency doma
when the periodT was the tuning parameter. Furthermor
they showed that taking into account the period-depend
changes in the membrane potential oscillation amplitudes
creased the range of input amplitudes for which time-sc
matching was associated with the optimal response of
LIFM.

When the noiseD was the tuning parameter, time-sca
matching held only approximately. In the time domain,
improved when the stimulation amplitude was increas
while in the frequency domain, the response of the sys
was more complex. Indeed, for low modulation amplitud
the SNR was maximal for an optimal noise level close to
one leading to time-scale matching. However, as the sig
amplitude was increased, this maximum disappeared.
these ranges of modulation amplitudes, the SNR present
maximum at a significantly lower noise intensity. In oth
words, there are two types of noise-enhanced response in
frequency domain: one for low modulation amplitudes
noise levels close to time-scale matching, and the other
intermediate modulation amplitudes, at low noise intensit
Our numerical investigations~not shown! indicate that the
hump discovered by Plesser and Tanaka@10# belongs to the
latter class.

When the matching with the mode was far from perfe
or deteriorated through the change of a parameter, suc
the modulation amplitude, we examined whether other no
related time scales, such as the mean ISI in the time dom
did not provide better matching. However, in all cases, th
yielded less satisfactory results than the modes~not shown!.
Therefore, at this point, it is not possible to pin down
simple explanation in terms of time-scale matching
noise-enhanced signal transmission when the modes did
match, even approximately, the modulation period. Th
need to be investigated on their own, and are probably
pendent on the interplay between the time scales
amplitude-dependent factors.

Our study revealed significant differences that app
when considering the response of the system in time
frequency domains. The optimal modulation periods or no
intensities that maximize the response of the system in t
and frequency domain are different. This stems from the f

-
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FIG. 17. ISI distribution~left column! and corresponding PSD~right column! for four different noise levelsD for four modulation
amplitudesA50 V/s ~first row from top!, A50.001 V/s~second row!, A50.01 V/s~third row!, andA50.05 V/s. Abscissae of left column
ISI normalized byT ~dimensionless!; ordinate of left column: the ISI PDFg(t) in kilohertz. Abscissae of right column: angular frequen
v normalized by stimulation angular frequencyV ~dimensionless!; ordinate of right column: the PSDP(v) in kilohertz. Parameters:S0

520 mV, V050 mV, m50.1 V/s, t51/0.006 ms,T52p/0.05 ms.
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that the criteria used to assess the regularity of the syste
response in time and frequency domains are sensitive to
ferent aspects of the spike train. Nevertheless, all crit
show that tuning the modulation period or the noise inten
can improve the response to weak stimuli. The differen
’s
if-
ia
y
s

between time domain and frequency domain criteria gr
with the modulation amplitude.

Furthermore, we introduced a method in order to comp
the ISI distribution when the phase of the input is not rese
each discharge. The comparison between this case and
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FIG. 18. Left column: the functionF(v) for four different noise levelsD for four modulation amplitudesA50 V/s ~first row from top!,
A50.001 V/s~second row!, A50.01 V/s~third row! andA50.05 V/s. Abscissae: angular frequencyv normalized by stimulation angula
frequencyV ~dimensionless!; ordinates:F(v) ~dimensionless!. Right column: SNR for fixedT52p/0.05 ms while varyingD against
tm

f (D)/T with tm
f 52p/vm

f wherevm
f is the mode of the PSD~or equivalentlyF) without modulation. Abscissa:tm

f normalized by the
modulation periodT ~dimensionless!; ordinate: the SNRS(v) ~dimensionless!. The parameters are the same as in Fig. 17.
d
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tion
endogenous situation revealed that the latter could be use
a satisfactory approximation of the former for the evaluat
of time-scale matching, as long as the input amplitude
weak. This is in agreement with@9#. The advantage of this
as
n
is

approximation is its numerical and analytical tractabilit
The computation of the cycle histogram confirms the valid
of the approximation for weak modulation and low noi
levels where it displays a sharp peak. When the modula
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period is slow compared to the membrane charge-disch
time, the peak is situated close top/2, suggesting that the
choice of this phase as the resetting phase gives satisfa
results. Numerical investigations confirm this point.

VII. CONCLUSION

Experimental investigations have shown that noise of
propriate amplitude can improve signal transmission a
processing in sensory neurons. Some of these have rep
SR-like phenomena, that is, when noise helps the detec
of weak signals. On the one hand, these studies show

FIG. 19. Two upper panels: abscissa: noise intensityD in mil-
livolts; ordinate: the SNRS ~dimensionless!. The ordinate of the
middle panel is the magnification of that of the upper panel. Arro
on both abscissae point toD50.32 ~mV!2 such that the mode of the
PSD equalsT. Lower panel: abscissa: noise intensityD in
~millivolts!2; ordinate: the maximum valuePM , in kilohertz, of the
PSD nearV. All figures are the case for fixedT52p/0.05. Param-
eters: S0520 mV, V050 mV, m50.1 V/s, t51/0.006 ms, T
52p/0.05 ms.
ge
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quantities such as the value of the interspike interval dis
bution, the signal-to-noise ratio, the input-output correlatio
transinformation, or coherence are maximized at some in
mediate noise level. Theoretical investigations using neu
models, on the other hand, have helped in clarifying the c
ditions under which such phenomena occur, as well as
mechanisms underlying them. One issue of particular inte
has been whether the same putative mechanism that lea
SR in weakly periodically modulated bistable system
namely, matching between the time scales of the no
induced hopping and the modulation period, is also resp
sible for noise-enhanced signal transmission in sensory n
rons. Following@9,10#, this work investigated this questio
in the case of the LIFM. Our analysis suggests that tim
scale matching occurs when at low modulation amplitud
the modulation period is tuned to maximize the system
response. It also holds, approximately, when the noise
plitude is tuned. Our investigations also showed that tim
scale matching is not the only process responsible for no
induced response improvement, as for intermedi
modulation amplitudes, the SNR is maximal at noise inte
sities much lower than the ones leading to time-scale ma
ing.
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APPENDIX: COMMENTS FOR NUMERICAL
CALCULATION

In order to numerically evaluate the integrals in the alg
rithm to calculate thetFP PDF @15#, we used time steps
smaller than botht andT/50. Furthermore, for largeD, the
time step was smaller thantm/10 wheretm was the mode of
the tFP PDF. In order to set the time step appropriately wh
changingT or D, we calculated first thetFP PDF for the
minimum T or maximumD and checked whether contro
computed with smaller steps yielded similar results. Th
this value was used throughout the computation for all val
of T andD.

To examine time-scale matching for the endogenous
riodic signal, calculations of thetFP PDF were stopped at th
modulation period. However, to compute either the ISI d
tribution for exogenous periodic signals or the PSD of t
spike train and the corresponding SNR for endogenous p
odic signals, calculations of thetFP PDF were stopped when
the area below the curve ofg, that is, *0

t g(t)dt, became
larger than 0.9999. We estimated this area using the trape
dal method.

In the computation of the PSD, we calculated the Four
transform of thetFP PDF using the fast Fourier transform
algorithm.
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