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Time-scale matching in the response of a leaky integrate-and-fire neuron model
to periodic stimulus with additive noise
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We study the response of a leaky integrate-and-fire neuron model to subthreshold periodic stimulus with
additive noise. Previous works have shown that the interspike interval distribution at the modulation period
goes through a maximum with increasing either the noise intensity or the period. This maximum appears when
the stimulation period is close to the mode of the interspike interval distribution in the absence of the modu-
lation. This phenomenon is called time-scale matching. In this paper, we examine time-scale matching in the
response to periodic signals with and without resetting of the input phase at each firing. For the case without
resetting, we calculate the phase distribution by iterating a stochastic phase transition operator. This operator
extends the phase transition curve commonly used in the analysis of the response of deterministic oscillators to
periodic stimulation. We also examine the dependence of the time-scale matching on the input amplitude.
Furthermore, we consider the response of the system in the frequency domain. It is known that the signal-to-
noise ratio derived from the power spectral density goes through a maximum with increasing noise intensity.
We show that the signal-to-noise ratio also has a hump as a function of the period, and discuss its relation to
time-scale matching. This work helps in clarifying conditions whereby noise can improve the detection of a
weak periodic signal by neurons through time-scale matchi®§063-651%99)07703-X

PACS numbds): 87.10+¢€, 07.05.Mh

[. INTRODUCTION pose of this work is to examine this issue in a prototype of an

excitable system. More precisely, we investigate whether

Experimental and theoretical investigations have showiime-scale matching enhances signal detection in the leaky
that noise of appropriate amplitude can enhance signal tran#tegrate-and-fire modéLIFM). This model captures essen-
mission in nervous systems, for instance, by linearizing thdial aspects in neuronal behavior, namely, excitability—

response to suprathreshold stimulatitor a review, se¢1]), leading to an all-or-none response—and refractoriness—
by increasing input-output correlation, coherence, androgressive recovery of excnablhlty following a dlschargg.
transinformation in the presence of weak aperiodic stimulad herefore, the study of the dynamics of the LIFM can help in

tion [2], or enabling the detection of subthreshold periodic€lucidating the mechanisms underlying the beneficial roles

signals[3,4]. The last phenomenon is one form of stochasticegiy:gy2¥eﬁgse in signal transmission and processing in ner-

resonancé¢SR) [5,6], i.e., “a phenomenon that is manifest in : . . _—

nonlinear systems whereby generally feeble input informa- The study of SR-like phenomena in the LIFM was initi-

tion (such as a weak sigiatan be amplified and optimized ated in[9,10]. In [9], Bulsaraet al. studied noise-enhanced
. 9 ) P P detection of a weak periodic signal in the LIFM. More pre-
by the assistance of noisd6].

isely, th h that th k heights of the int ik
SR has been thoroughly studied in noisy weakly periodi cisely, they showed that the peak heights of the interspike

, ‘interval (ISI) distribution go through a maximum with in-
cally modulated systems in a double-well potentfak re-  roaqing the modulation periddor noise intensityD thereby
views, se€[5,6], and references therginlt has been sug-

: exhibiting “resonance” phenomena. Furthermore, they

of the noise-induced hopping between the two stable states the IS distribution without modulation, thus providing
and the modulation periodor a discussion of this issue, see strong evidence for time-scale matching in these resonances.
[5-7). In this paper, we extend their results by systematically
Some neurons in nervous systems operate as bistable devestigating the influence of noise intensity, modulation pe-
vices, so that the aforementioned studies on SR can be diiod, and amplitude on time-scale matching. In this way, we
rectly extended to them. However, under many circum-shed light on the role of subthreshold modulation character-
stances, including some of the experiments describgd]in istics, and we determine conditions under which time-scale
sensory neurons are not bistable, but rather excitable, that imjatching occurs. Furthermore, the results|9 were ob-
they have a single resting state, small perturbations of thitained under the assumption that the input phase is reset after
state are damped, while large stimulations evoke an actiogach discharge. Physiologically, this may correspond to en-
potential followed by a return to the stable state. Thereforedogenous membrane potential modulat[dd]. It can also
in order to get a better understanding of the mechanismprovide an approximation for exogenous forcing, i.e., when
underlying SR-like phenomena in nervous systems, the rehe input phase is not reset. We propose a method for the
sults obtained in the case of bistable systems need to bmmputation of the distribution of discharge phases when the
reformulated and extended to excitable systg®isThe pur-  input phase is not reset. Our method relies on the extension
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of the .phase transition curve c_ommqnly. used in the_study of Vmo(‘t)zvoe_<t_tf>/7+MT(l_e—(t_tr)/T)
periodically forced deterministic oscillations to a noisy sys-

tem. Using the phase distribution, we compute the ISI distri- AT

bution of the exogenously forced LIFM. This allows us to + == [siNQt+0—¢)
compute conditions for time-scale matching in this system V1+(Q7)

and compare them with those in the endogenously forced (=t i o

The study in[9] deals mainly with the response of the \;here =R C is the membrane time constant= (V.. /)
LIFM in the time domain. In[10], Plesser and Tanaka ex- +(1,/C), p=arctan2?), t' (<t) is the last time the unit
amined the response of the noisy LIFM to subthreshold PEfired, andA=1,/C. We refer toA as the modulation ampli-
riodic forcing in the frequency domain. To this end, theytude, and denote by =27/Q the modulation period. De-

computed the signal-to-noise rati®NR) from the power o onding on the values of these two parameters, the input is
spectral densityPSD of the spike train, and showed that gjiher sypthreshold or suprathreshold. When the amplitude is
this quantity was maximized at some intermediate NnOiSg, g6 enough to generate firing, the stimulus is referred to as
level. In this work, we investigate whether this maximum g, aihreshold. Conversely, subthreshold modulation refers
results from time-scale matching. Furthermore, in the samg, 1o case wherd is small, so that the LIFM does not
way as in the time domain, we examine the influence of thejigpjay sustained firing. In the following, we deal only with

modulation period and amplitude to determine whether they i reshold inputs. The various responses of the determin-

SNR is also maximal at some appropriate forcing periodissic | |FM to sinusoidal stimulation have been described in
Finally, we compare the results in the time and frequenc;tlg]_

domains.

This paper is organized as follows. In Sec. Il, we intro-
duce the LIFM. In Sec. lll, we propose methods to analyze
the response with and without resetting of the input phase. In When a neuron receives infinitesimally small excitatory
Sec. IV, we examine the time-scale matching and investigatand inhibitory inputs via corresponding synaptic connec-
the influence of the modulation amplitude. In Sec. V, wetions, subthreshold dynamics of the membrane potential can
investigate the response of the system in frequency domaitre described as followSor reviews, seg14]):

Finally, we discuss our results in Sec. VI.

B. Stochastic model

Vv
dV(t)=(—;+M dt+\2DdW(1), V(1)<S,
Il. LEAKY INTEGRATE-AND-FIRE NEURON MODEL (2-3)

A. Deterministic model whereD represents the intensity of the input noise &¥i¢t)
The LIFM describes the electric activity of a neuron the standard Wiener proced4(t) is an Ornstein-Uhlenbeck
membrane. It is composed of a resistance and a capacitan@Y) Stochastic process. o
in parallel, together with a firing threshold. The subthreshold N the presence of a sinusoidal input, £2.3) becomes
dynamics of the membrane potenti(t) is described as

follows: dv(t)= dt+y2DdW(t),

(2.9

Vv
~ —+utASINQL0)

dVv(t) V(t)—V.,
Cr =" gt V<S V(0)=Vo, V(H)<S.

(2.7)

V is no longer an OU process. However, uskg,q of EQ.
(2.2), we can change variables according to

X()=V() =Vmod ),  Smod) =Sp—Vmodl). (2.5

whereR is the total membrane resistan€2the total mem-  Thus, Eq.(2.4) is transformed into
brane capacityy., the resting potential, the resetting po-
tential, I (t) the stimulus current, an8, the constant firing X
threshold. This model generates a discharge viherceeds dX(t)=- ;dH \/ﬁdW(t),
Sy, Which is described by an impulse. Following a discharge, (2.6)
V is immediately reset t&/. X(0)=0, X(t)<Smodl).
WhenV,>S,, the LIFM discharges periodically, even in
the absence of inputs. In this respect, its dynamics in th&quation(2.6) shows that the transformed variat{ét) is an
presence of periodic modulation and additive noise resembl®U process. In other words, the periodically modulated
those of the perfect integrator that have been thoroughly andIFM with constant threshold is equivalent to the LIFM
lyzed in[12]. In the following, we assume that,<Sy;, so  without membrane modulation but with an appropriately
that in the absence of inputs, the membrane potential settlésne-dependent threshold. This is illustrated in Fig. 1, which
atV.,, and there are no discharges. shows the behavior of the original membrane poteritiat
When the input is a sinusoidal currenit(t)=I, per panel together with the transformed orilwer panel.
+1, sin(Qt+6), the solution of Eq(2.1) is given by The advantage of this transformation is that the discharge

V() =Vo<Sy if V(=S
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FIG. 1. Schematic transformation of the variables. Upper pane!:)ot

corresponds to Eq2.4) and lower panel to E¢2.6). Dotted curve

in upper panel is the membrane potential without noise, correspon
ing to V,,o(t) in Eq. (2.2). Abscissae: time in arbitrary units; ordi-

nates: voltage in arbitrary units.

times of the model can be derived from the first-passage tim
of an OU process through a smooth boundary. This is d

tailed in the following.
The timet at whichX reachesS,,,q for the first time given
X(0)=0 is called the first-passage timg):

tep=iINF{t:X()>Sod )| X(0)=0<Spod 0)}.  (2.7)

tep is @ random variable with probability density function

(PDP g(Smodt).t| 0) satisfying the following equatiofiL4]:
t
p(.10,0 = [ (St 7),710)
0

X PX,t|Smod( 7), )T
(X>Smodt), Smod 0)>0), (2.8)

where p(x,t]y,s) is the transition PDF of the proce¥{t)
and satisfies the Fokker-Planck equati@#]:

2

ALCA P B 2.9
R el A @9
The solutionp(x,t|y,s) of Eq. (2.9) is given by
1 (X_ye (t*S)/T)Z
x,tly,s)= ———expg — ,
P |y ) \/Zo't,s 20—t2,s

(2.10

of=2D7(1—e 2797, (2.10)

Equation(2.8) is a Volterra integral equation of the first type
with respect tag, which cannot be solved analytically except
for some special boundarieS,(t). A special attention
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FIG. 2. Schematic spike train and corresponding current for
h endogenougipper pangland exogenous signdbwer panel.

(J:or the exogenous signal, the phase of the input current is not reset

after each firing. The phase, of the input atnth firing and the
interspike intervat,, between (—1)th andnth firing are random
variables, and they have corresponding probability density function,
h,(#) andi,(t), respectively. Abscissae: time in arbitrary units;
Srdinates of the current: in arbitrary units; ordinates of the spike
train: voltage in arbitrary units.

because the functiop(X,t|Syof 7),7) is singular asr—t.
Giorno et al. [15] proposed a numerical procedure for solv-
ing Eq. (2.8) for a smooth time-dependent boundary. We
used the method in order to perform the numerical computa-
tion for thetrp PDF.

Ill. COMPUTATION OF THE ISI DISTRIBUTION

Following [11], we classify inputs as endogenous and ex-
ogenous depending on whether the input phase is reset to a
fixed value after each discharge or not. To our knowledge,
previous studies have mainly dealt with the endogenous
modulation. In the following two subsections, we describe
both cases successively and propose numerical methods to
calculate the interspike interval PDF for each of them.

A. Endogenous periodicity

When the input phase is reset to a fixed value after each
discharge(upper panel Fig. 2 the ISI distribution is given
by thetgp PDF. This distribution depends on the initial phase
0 as illustrated in Fig. 3. Usuallyg is taken asr/2 because,
for this value, the ISI distribution is close to that of the
corresponding exogenous forcing, in the sense that the peaks
of the ISI distribution are situated close to the multiples of
the modulation period. Hence, for the endogenous periodic
signal, we describe the ISI distribution gét|7/2).

B. Exogenous periodicity

When the periodic signal is exogenous, the membrane
potential and the threshold are reset after the discharge but

should be paid for numerical computation of the solution,not the phase of the external inp(lower panel Fig. 2
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FIG. 3. First passage time probability density functigft| )
for four different initial phasesfd=0 rad, «/2 rad, = rad, and
27 rad. Abscissa: first passage time in milliseconds; ordinate:
probability density in kilohertz. Parameterse=0.1 V/s, A
=0.05 V/s, 7=1/0.006 ms(we chose these values to compare our
results with those of Bulsarmt al.in [9]), T=300 ms,S;=20 mV,
D=0.2 (mV)?, V=0 mV.

Hence, the phase of the signal at the firing is a random vari-

able. In this subsection, we propose a method to calculate the

PDF of this variable and derive the ISI distribution from it.

The initial phased completely determines the time course
of the boundaryS,,,(t) in the tgp PDF g(Syod(t),t|0) de-
fined by Eq.(2.8). Hence, we denote the PDF lgyt|#) for
the sake of convenience. Also let us denote

KT+ ? 49), (3.2

1 oo
f(elo=G 2 9

whereg(t|#)=0 if t<0. Convergence of this series is en-
sured by the fact that for largeg can be bounded by expo-
nentials[16]. The functionf(¢|#) is the PDF of the next
firing phase¢ given the last discharge phageand satisfies
[5Tt(#0)dp=1, f(¢|6)>0.

Let h,(0)(0<0<2w) be the PDF of the phase at the
time of nth firing, n=1,2,....Then,h,(#) is obtained by
the following equation:

2m
hn(¢)=f0 f(¢|0)h,_1(0)d6, n=1,2, ...

=Phy-1(d), (3.2
wherehg(6) is the PDF of the initial phasé, and satisfies
ho(6)>0, f%”ho(a)d0= 1. We call P the stochastic phase
transition operato(SPTOQ. It is a Markov operator with ker-
nel f(4|0). A similar operator was used in the analysis of
stochastic phase lockirjd 7] and linearization by noisgl8§].
Figure 4 shows examples 6{¢|#) for four different noise
intensitiesD.

Applying the SPTO iteratively to the PDify, of the initial
phase, we can obtaim, as

hn:Phnfl:P(Phan):” ':Pnho. (33)

Since
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FIG. 4. The kernelf(¢|6) of the SPTOP for different noise
intensities,D =0.02 (mV)? (upper pane| 0.2 (mV)? (second panel
from top), 1 (mV)? (third panel from top, and 2 (mV)? (lower
pane). Axis of 6: the phase of the input at the previous firing, in
radians. Axis of¢: the phase of the input at the next firing, in
radians. Axis off (¢|6): the probability density function of the next
firing phase¢ given the previous firing phase & in kilohertz.
Parametersu=0.1 V/s,A=0.05 V/s, 7=1/0.006 ms,T=300 ms,
So=20 mV, Vo=0 mV.

sz inf £( | 6)d >0, 3.9
0 ¢

{P™ is asymptotically stablg19], that is, there exists a
unigue density functiom,, such thatPh..=h,, and
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06 f ' ' D:0'02 ] satisfiedT* =t,(D), whereD* (or T*) is the optimal value
D-02 —— which gives the hump of the height of the ISI distribution at
D=] --- T while varyingD (or T) for fixed T (or D).
s 04l D=2 - ] In this section, we examine consecutively the influence of
;; the input amplitude on these two conditions. For each we
consider both situations where the periodic signal is endog-
02 L femmmmed enous and exogenous.
g A. For fixed D
0 . . Let us start with the time-scale matching that takes place
0 w2 K 3n/2 2n when the modulation period is varied, while the noise am-

phase: 6 (rad) plitude D is kept constant. For an endogenous signal, the ISI

FIG. 5. Phase distributioh..(8) for D=0.02(mV)? 0.2(mv)?,  distribution isg(t|7/2) as mentioned before. Figure(@per
1 (mV)3 and 2(mV)2 Abscissa: the phase of the input at the Pane) is an example of the ISI distribution for four different
firing, in radians; ordinate: probability density in (radiad) Pa- ~ T. The abscissa is normalized by the modulation period to
rameters:u=0.1 V/s, A=0.05 V/s, 7=1/0.006 ms,T=300 ms, facilitate the comparison. For smdll (thick solid line, the

Sp=20 mV, Vo=0 mV. ISI distribution displays several peaks which are close to
multiples of T (not all are showhn This is a signature of

lim ||P"hy—h.||=0 forevery h. (3.5 skipping: discharges occur mainly at a given phase, but not
n—o necessarily at every period. For short periods, the ped@ksat

o smaller because the LIFM does not have time to recover
We refer toh..(6) as phase distribution. It corresponds to thefrom the refractory period within one stimulation period. As
normalized cycle histogram used by neurophysiologists tor increases, so does the height of the S| distribution peak at
analyze experimental data. Figure 5 shdwsfor four dif- T At the same time, a new peak at a shorter time appears.

ferent values oD. This peak is due to the fact that, for slow modulation, the
The PDF of the time interval, between G—1)th andnth | |FM generates a burst of tightly packed spikes every time
spikes,in(t), is given by the input approaches its maximal value. Therefore the dis-
o charge train is a succession of bursts separated by intervals
in(t):f g(t|@h,_1(6)do, n=1,2,... (3.6 close to the modulatl_on period. The mtraburst ISIs are 9Io§e
0 to the refractory period. The number of discharges within
each burst varies from one burst to another, but steadily in-
andi..(t), the ISI distribution, satisfies creases with the period. This lengthening of the burst ex-
o plains the increase of the size of the first peak in the ISI
i (1)= g(t|6)h..(6)de. (3.7 dlstr|but|on, as the peak height atprogressively decreases.
0 Overall, this leads to the hump shaped dependenag DY

on T illustrated in Fig. 6(third panel from top Similar
Throughout this work, we computed, by iterating” and  humps exist forg(kT), i.e., at multiples of the modulation
then obtained., using Eq.(3.7). Comments for numerical period. These are shown in the three-dimensid88l) rep-
calculation are provided in the Appendix. resentation of the IS distribution as a function of both the

In order to allow a better comparison with prior studies, |S| duration and the period in Fig. 7 (upper panel

results shown in the figures were all computed with the same When the input is exogenous, i.e., its phase is not reset,
parameters af9]. We also performed similar numerical in- the overall dependence of the ISI distribution ®ris the
vestigations with other parameter sets, including those ofame. Figure second and fourth panels from jognd Fig.
[10]. But, these are not illustrated through the figures, as th (lower panel illustrate this. The notable difference is that

main conclusions remain unchanged. the peaks in the 1SI are less marked for the exogenous signal.
This results from the fact that the phase distribution has a
IV. TIME-SCALE MATCHING IN TIME DOMAIN nonzero width. This difference leads to a smaller optimal

. period T* [275 ms against 300 ms in Fig. @econd and
Bulsaraet al. [9] showed that, for the LIFM receiving ¢5urth panels from top.

subthreshold periodic modulation, the height of the ISI dis-  pgrfect time-scale matching occurs whEh is equal to

tribution at the modulation period goes through a maximumy,e modet, . of the ISI distributionwithout modulation for
with increasingD, indicating that noise of intermediate am- ¢, o4 D that is

plitude can improve signal transmission. They observed that

the same quantity also goes through a maximum with in- T*=t,(D) for fixed D while changingT, (4.1
creasingTl. They showed that at both maxima, the time scale

of the noise-induced firing matched the modulation period, invhereT* is the optimal value o that maximizes the peak
the sense thdtl) in the former case wherBwas fixed and of the ISI distribution afT [i.e., g(T) or i..(T) for endog-
varied, the mode,(D*) of the ISI distribution in the ab- enous and exogenous forcing, respectiyefigure 8(upper
sence of modulatiofi.e., A=0) satisfiedt,,(D*)=T at the pane) showst, (D) versusT* for several modulation am-
optimal noise leveD*, (2) while in the latter case, whei®@  plitudesA, that is to say, for each value &, the optimal
was fixed andT varied, the optimal modulation periof* periodT* is plotted against,,(D). The graph forA=0.1 is
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FIG. 6. Two upper panels: ISI distribution for endogenous-
per panel and exogenoussecond panel from tggsignals for four
different modulation periodd. Abscissae: ISI normalized by the
periodT (dimensionless ordinates: probability density in kilohertz.
Two lower panels: the height of the ISI distributionTafor endog-
enous(third panel from top and exogenouflower panel signals.
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FIG. 7. Three-dimensional representations of the ISI distribution
(in kilohertz) as a function of the normalized IStlimensionless
and the periodr in milliseconds for endogenoysipper pangland
exogenousglower panel. The parameters are the same as in Fig. 6.

interrupted abouT™* =200 ms. This is because larger peri-
ods lead to suprathreshold modulation. Equat#an), which
characterizes time-scale matching, corresponds to the diago-
nal. This holds forA=0, but not for larger values o, the
graphs ofT* move away from the perfect matching. The fact
that the curve is on the diagonal fé&=0 stems from the
definition of T*.

As A is increased the curves depart from the perfect
matching, showing that™* is larger than,,(D). This influ-
ence of the modulation amplitude is independent of the re-
setting strategy as attested by the similarity between the two
upper panels in Fig. 8 showing, respectively, the endogenous
and the exogenous cases.

The fact that time-scale matching deteriorates for large
amplitudes and™ suggests that this may be due to the de-
pendence of membrane potential oscillation amplitude on the
modulation period. To account for this effect, we adjusted
the value ofA, the modulation amplitude, so as to keep the
value of A’=7A/ 1+ (Q7)?, the effective oscillation am-
plitude, constant whilél was tuned to obtain maximal re-
sponse. In this way, for each value of the noise amplitDde
and effective modulation amplitud&’, we obtained a new
optimal periodT* that maximized the ISI distribution &t
The two lower panels in Fig. 8 show the graphs fg(D)
versusT* for endogenous and exogenous periodic stimula-
tion. In the former, perfect time-scale matching is achieved
for all effective amplitudes, as all curves are superimposed
on the diagonal. In the latter, the same holds for law
However, at largeA’, the optimal period™ is smaller than
tm(D). This effect is more pronounced at larggD), i.e.,
low noise levels.

Bulsaraet al. proposed an approximategs PDF using the
method of images. The two upper panels of Fig. 9 show

T* represents the optimal period that maximizes the height of thdéime-scale matching using their express|d. (16) in [9]]

ISI distribution atT. Abscissae: the perio@l in milliseconds; ordi-
nates: probability density in kilohertz. Parameters=0.1 V/s,
=1/0.006 ms, Sy=20 mV, Vo=0 mV, D=0.2(mV)?, and A
=0.05 V/s.

for the ISI distribution of endogenous periodic signal. Com-
parison of these results to Fig.(Brst and third panels from
top) shows that the main properties of the time-scale match-
ing are preserved under this approximation. For instance, the
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100 150 %\(/}gde_ZIS(()D) (3122) 350 400 FIG. 9. Time-scale matching calculated by the method of the

images[9]. Periodic signal is considered as endogenous, so the ISI
FIG. 8. Time-scale matching for fixdd. The optimal period™ distribution is g(t|7/2). Two upper panels: abscissae: the mode
that maximizes the height of the ISI distribution at the modulationt (D) of g(t|w/2) without modulation, in milliseconds; ordinates:
period T for a given value ofD is represented against the mode the optimal valueT* in milliseconds, which gives a maximum of
tm(D) of the ISI distribution in the absence of modulation. First andg(T|#/2) while changingT for fixed D. We plot howT* changes
third panels from top correspond to the endogenous signals whileshile varyingt,(D) (i.e., D) for fixed A in upper panel and\’
second and fourth panels from top are those of exogenous signals.Ar/\/1+ (Q7)? in the second panel from top. Two lower panels:
The graphs in the two upper panels shdw for four different  AbscissaeT in milliseconds; ordinates: the motig(D*) of the ISI
values ofA, those in the two lower panels show the same quantitydistribution without modulation, in millisecond®* is the noise
for four different values ofA’=Ar/\1+(Q7)%. Abscissae: the intensity which gives a maximum af(T|=/w) while changingD
modet (D) of the ISI distribution without modulation in millisec- for fixed T. We plot howt,,(D*) (i.e., D*) changes while varying
onds. Larget,, corresponds to low noise intensity. Ordinates: the T for fixed A in third panel from top and\’'=Ar/\1+(Q7)Z in
optimal valueT* in milliseconds. All parameters except and A lower panel. Parameterg:=0.1 V/s, 7=1/0.006 ms,S;=20 mV,
are the same as in Fig. 6. Vp=0 mV.
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graphs for fixedA' are close to parallel lines, and move 0.008 '
away from the diagonal line with increasimgor A’. Fur- i D002 —
thermore, the directions of the changes are similar to those 0.006 |it D=1 === |

for Fig. 8 except in the upper panel of Fig. 9 at low noise
levels, where the approximation underestimates the value of
T*.

g(in2)

B. For fixed T

The previous results were concerned with the matching
for a givenD asT is changed. Here, we consider the con-
verse situation whereby is kept constant whil® is varied.
Interestingly, the qualitative changes that take place in the
ISI distribution as the noise intensify is increased are simi-
lar to those described in the preceding section whemas
increased. As shown in the two upper panels of Fig. 10 for i
both endogenous and exogenous forcing, low noise levels are ) Pl
associated with skipping with peaks at multiples of the
modulation period. As the noise level is increased the peak at

(
=3
g

T first grows and then decays as the noise-dominated firing 0.002 1y

with short intervals takes over. The two lower panels in Fig. i N /
10 illustrate the respective graphs of the ISI distributiof at ok AN A s

as the noise is increased. Again both curves are hump shaped 0 300 1316(()ms) 200 1200
with the exogenous signal evoking the smaller maximum 0.004 :

value. The corresponding optimal noise levBls are close

to one another. The fact that the responses at multipl&s of
also go through maxima d3 is increased can be seen in the
three-dimensional representations in Fig. 11. These results 8
together with the similar description given in the preceding 20002 ¢
section corroborate the findings @], and show that phase E
resetting does not introduce important changes in the re-
sponse of the system.

Similarly to the preceding section, we examine whether at , ,
the optimal noise levels that maximize the response of the 0.01 0.1 1
system there is a matching between the time scales. Let us D (mV)*
denote byD* the optimal noise amplitude which maximizes 0.004 ' '
g(T|#w/2) ori.,(T), and byt,(D*) the mode of the corre-
sponding ISI distribution in the absence of modulation.

Time-scale matching occurs when we have the relation

) . . € 0002 |
tm(D*)=T forfixed T while changingD. (4.2 o

The two upper panels in Fig. 12 show the graph3 ogrsus

t,(D*) for several modulation amplitudes for endogenous

and exogenous forcing, respectively. The graphAer0 is 0
far from the diagonal line. Therefore E@.2) is not satisfied

for A=0 or for smallA because the ISl distribution @&t[i.e.,

g(T) ori.(T)] varies continuously wittA. In other words, FIG. 10. Two upper panels: ISI distribution for endogenus:
for this range OfA, the modetm of the ISI distribution for per panel and exogenou@econd panel from t()p;ignals for four
D=D* is not equal tol. The reason for this is that at very different noise intensitie®. Abscissae: I1SI in milliseconds; ordi-
weak modulation amplitudes, the periodicity of the input isnates: probability density in kilohertz. Two lower panels: the height
not reflected in the ISI distribution, i.e., there are no markecf the ISI distribution afT for endogenousthird panel from top
peaks at the multiples of. Therefore the value of the ISI and exogenouglower panel signals.D* represents the optimal
distribution atT is not in the vicinity of a clearly defined noise that maximizes the height of the ISI distributioTafbscis-
local maximum. For a given signal amplituélethe situation  sae: the noise intensit in (millivolts)?; ordinates: probability
improves at largd because the corresponding effective am-density in kilohertz. Parametergi=0.1 V/s, 7=1/0.006 ms,S,
plitude A’ is large, so that the periodicity of the input affects =20 MV, Vo=0 mV, T=300 ms, andA=0.05 VIs.

the discharge pattern. For the same reason, the curves ap-

proach the diagonal asis increased: the optimal noise level function of T and the diagonal varies less witreven though
moves closer to the perfect matching condition. When thehere is still a slight improvement at larg@&r The line for
modulation amplitudé\ is adjusted to account for the depen- each level ofA’ runs almost parallel to the diagonal. How-
dence ofA’ onT, the distance between the graphtgfas a  ever, unlike Fig. 8third panel from top, these are not su-
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g(tl/2)
0.01

600
900
ISI (ms) 1200

FIG. 11. Three-dimensional representations of the ISI distribu-
tion (in kilohertz) as a function of ISI in milliseconds and noise
intensity D in (millivolts)? for endogenougupper panéland exog-
enous(lower panel. The parameters are the same as in Fig. 10.

perimposed. As expected, the distance between the lines and
the diagonal is smaller at larg&r’. With increasingA’, the
distance between the membrane potentiaht T and the
threshold S decreases. Consequentlip* decreases and
tn(D*) increases. Hence, the graph moves towards the diag-
onal line with increasing\’.

The two lower panels of Fig. 9 show that the method of
images captures well the discrepancy between the perfect
matching and the actual value gf(D*) at low amplitudes,
and the progressive movement of the lines towards the diag-
onal as the amplitude or the period are increased. Here again,
compared to Fig. 1Zfirst and third panels from tgp this
approximation overestimates the valuetgf{D*) (i.e., un-
derestimatedD*) at large modulation periods and ampli-
tudes.

V. TIME-SCALE MATCHING IN FREQUENCY DOMAIN

Following [9,10], we assume that the signal is endog-
enous, that is, the phase of the sinusoidal signal is reset to the
same valuef, after each discharge. Hence, the discharge
times of the model form a renewal point process, i.e., they
are independent and identically distributed. This allows us to
compute the power spectral density of the spike train from
the ISI distribution according tp10,12]

1 9  G-o)

Mode: tm(D*) (ms) Mode: tm(D*) (ms) Mode: tw(D*) (ms)

Mode: tm(D*) (ms)

400 ———
A=) — 7
350 +A=0.01 g 1
A=0.05 ---- el
300 f A=0.1 - /':o
tm=" - )
250
200
150
,/ (."O
100 LWl
100 150 200 250 300 350 400
Period: T(ms)
400 —
A=Q — "o ///
350 FA=0.01 e 1
300
250
200
150
100 Ll .
100 150 200 250 300 350 400
Period: T (ms)
400 T T T T . -
A'=0 — Pl
350 +A’=0.5 T
A=13 ---- e
| A’=3.3 - 0
300 T — - 2
250
200
150
«//,
100 “—= ————
100 150 200 250 300 350 400
Period: T(ms)
400 T T T T —
A=0 — el
350 +A’=0.5 e
A=13 ---- e
300 _A’:23
tm=
250
200
150
7
100 L—F .
100 150 200 250 300 350 400

Period: T (ms)

Plw)= 7T<t>\ - 1-9(w) 1-9g(—w)/’ 6.1 FIG. 12. Time-scale matching for fixed t,,(D*) (the mode of
the ISI distribution without modulation at the optimal nol3& that
where(t) is the meartgp and maximizes the height of the ISI distribution at the modulation pe-
riod T) is represented against the periddFirst and third panels
w from top correspond to the endogenous signals while second and
a(w): f g(t)exdiwt]dt. fourth panels from top are those of exogenous signals. The graphs
0

in the two upper panels shawy(D*) for four different values of,

those in the two lower panels show the same quantity for four

For largew, the PSD stabilizes at 1#(t)). Additionally, different values oA’ = A7/ 1+ (Q17)2. Abscissae: the peric in
when the spike train is the Poisson impulse noise with pamillisecond; ordinates: the modg,(D*) of the ISI distribution
rameter 1{t), the PSD is flat and equal to X(t)) for all w. without modulation in milliseconds. All parameters exc&mnd A
This suggests that considering the quantity(w}  are the same as in Fig. 10.
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FIG. 14. Upper panel: noise intensify in (millivolts)? versus
the modet,, (thin solid line of the ISI distribution and the meagy,
(dotted ling together witht! =27/ w!, (thick solid ling, wherew,
is the mode of the PSD, or equivalently that Bf We drew a
horizontal line atT=27/0.05, which is often used as modulation
period in our results. Lower panel: the relation betweﬁrandtfn.
Units of both axes in lower panel are milliseconds. Paramegrs:
=20 mV, 7=1/0.006 ms,.=0.1 V/s,Vy=0 mV, A=0 V/s.

FIG. 13. Three-dimensional representations of the ISI distribu-
tion g(t| #/2) in kilohertz(upper pang| the PSDP(w) in kilohertz
(second panel from to@ndF(w) (dimensionless(lower panelin  with t' =27/w' (thick solid line), wherew', is the mode of
the absence of the modulation. Axes of ISIin upper panel: the ISl inpe PSD, or equivalently that dt. There is a significant
milliseconds. Axes ofD in all panels: the noise intensity in difference between these quantities and we hE{}(ﬁtm

illi 2 i N - . .
(millivolts)”. Axes .Of‘." 'n.the two lower pa.nels' Fhe angmar. fre <ty . The lower panel of Fig. 14 shows the relation between
quency of the periodic stimulation current in radians per millisec-

ond. Parametersu=0.1 V/s, 7=1/0.006 ms, Sy=20 mV, V, the m_odetm in time dqmaln and the modtén in frequency'
—0mV. A=0 V/s. domain. In the following, we assume that the appropriate

time scale in the frequency domaintﬁ. Not only does this

choice seem natural in the frequency domain, but also, it is
=m(t)P(w) can be advantageous for the comparison of théhe one that led to better matchings in all conditions. Further-
discharge patterns at various noise levels in the frequencyore, even in cases where time-scale matching was not

domain[10]. achieved,tfn was the closest of the three to the modulation
Figure 13 shows the ISI distribution and correspondingperiod.
P(w) as well asF(w) as a function of noise intensity in To assess the periodicity of the spike train in the fre-

the absence of periodic input. As the noise level is increasedjuency domain, we evaluated the peaks of the PSDFand
shorter intervals become more likely, and the mode of the IShear(), and examined how these changed when either the
distribution moves to the left. In the same way, the mode oimodulation period or the noise were varied. The maximal
the PSD(and consequently that &) moves right, showing value of F near(} is also referred to as the signal-to-noise

the increase in high frequencies. ratio (SNR) [10]. The two quantities are defined as
In the time domain, we considered the mode of the ISI
distribution in the absence of modulation as the appropriate Py=maxP()|0.9<w<1.07}, (5.2)

time scale of the spontaneous firing. This choice followed

the results iM9] that showed that with this quantity, time-

scale matching could occur when the response of the LIFM S=maxF(0)|0.9N<w<1.0M}=m(t)Py. (5.3

was maximal. The upper panel of Fig. 14 illustrates three

possible candidates for the noise-induced firing time scale iISNR compares the value of the maximum of the PSD at the
the frequency domain, namely, the mdge(thin solid ling modulation frequency to its base level #{t)) at large fre-

of the S| distribution and the meagy, (dotted ling together  quencies. However, d$) varies when either the modulation
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period T or the noise intensity is modified,Py, and SNR  SNR displays a hump fof always neatﬁn(D) (indicated by
are not proportional_when plotted against one pf th_ese pahe arrow. However, this peak progressively disappears as
rameters. Yet, practically, we observed tkgt varies littte  the modulation amplitude is increased. Therefore, unlike in

with T in the range of parameters that we considered, so thahe time domain, perfect matching is not achieved whén
F and PSDs are almost proportional whénvas varied for s held constant.

fixed D.

B. For fixed T
A. For fixed D . o )
One of the most widely used criteria to characterize SR

Atfirst, we examine how the two quantiti€y, and SNR paq heen that the peak of the PSD at the modulation period
change, when, for a fixe®, the modulation periodl is o 55 SNR derived from it is maximal at some intermediate

varied. To our knowledge, previous studies have not deterﬁoise level. Bulsarat al. examined this question in the pe-

mined whether this situation I(_eads toa resc_)nancellke phe'riodically modulated perfect integratpt2]. However, since
nomenon. As our aim is mainly to determine whetlgy

. . ! . this system does not have a subthreshold regime, their results
and SNR have a maximum when the modulation period is :
neart’ , we limit our investigation to periods in the vicinity cannot be extended directly to the LIFMZ Pl_esser and Tanaka
of thién\,/alue [10] showed that the SNR of the periodically modulated
The left column in Fig. 15 shows how the ISI distribu- LIFM is maximal at some intermediate noise intensity. In

tions for three different modulation periods vary when thethis section, we evaluate the SNR over a wide range of pa-
input amplitude is increased from=0 to A=0.05. The ab- rameters and compute the optimal noise value that maxi-

scissae have been normalized by the modulation period @Ztecii;h; quantity with the one that wouild yield time-scale

facilitate the comparison between the different curves. The Figure 17 and Fig. 18 show the ISI distributiofiett col-
middle column in the same figure represents the corresponq]-mn in Fig. 17, the F;SDs(right column in Fig. 17, F (left
ing functionF. The PSD is not shown since, as mentioned O . LI

before,(t) varies little withT so that there is little difference column in Fig. 18, and SNR(right column in Fig. 18 for

) ) A=0 (first row from top, A=0.001, 0.01, and 0.0&rom
between PSD anH. For A+ 0, F displays a maximum at the second to fourth roy

modulation frequency. The larger the modulation amplitude, The main influence of noise on the PSD is to increase the

the larger the corresponding peakFn As the period is in- b : : :
X ) ase value at large frequencies, since large noise levels lead
creased, the peak height, i.e., the SNR, goes through a maxL” corter mean ?S{U (;nd hence large @% Due to this

mum. The right (.:Olumrf' ShOW.S the variation pf the peakeffect, Pw increases monotonously for low modulation am-
height as a function of,/T. Time-scale matching occurs plitudes

v_vhen the_m.ode of the SNR coincides with one. Thi; f:ondi- The graph oD versusP,, does not display any resonance
tlfon is satisfied aA=0, as a consequence of the definition of (seeA=0.05 in the lower panel of Fig. 19This phenom-
ty- Itstill holds approximately for small modulation ampli- ¢4, is also apparent in the upper panels of the right column
tudes (second panel from top in right column of Fig.)15 ¢ Fig 17, At larger modulation amplitudes, the situation is
However, at larger modulations, the mode of the SNR movegjiterent. The size of the peak at the modulation frequency
to values smaller than one. In other words, the SNR is MaXigrows at low noise levels, goes through a maximal value,
mal at periods larger thqﬁrﬁ,]- and then decays. The lowest panel in the right column of Fig.
The upper panel of Fig. 16 shows how the SNR change$7 shows how the shape of the PSD changes in this process.
progressively with the input amplitudehe noise level is  \when the corresponding profile d?y, is plotted against
different from that in Fig. 15 The arrow indicates,(D),  noise intensitylower panel of Fig. 18 it appears that in fact
i.e., when the mode is situated at this point, there is perfeghe optimal noise level that maximizé, is considerably
matching. The difference between the optimal modulatiorsmaller than the one leading to time-scale matchingi-
period and the value that would lead to perfect matching cagated by the arroyv Thus, this resonance phenomenon that
also be seen in the lower panel of Fig. 16, which showspccurs at intermediate subthreshold modulation and low
th(D) versusT* for various input amplitudes. In other noise levels cannot be attributed to the matching between the
words, for each noise levé, this figure represents the op- time scales of the noise-induced firing and the modulation
timal modulation period™ that maximizes the SNR against period in the same way as resonances in the time domain
the noise-related time scalé,(D). Perfect matching corre- could be.
sponds to the diagonal and is necessarily satisfietl=a0. The influence of noise on the SNR differs from that on
However, at larger values &, the curves are situated above Py, . Indeed, at low modulation amplitudes, the SNR exhibits
the diagonal, confirming that the optimal periods are largea distinct hump, whereaB,, was monotonously increasing.
thantIn(D), and furthermore that this difference increases The right column of Fig. 18 represenlt%(D)/T versus
with the modulation amplitudes. the corresponding value of the SNR. Perfect time-scale
To check whether this amplitude-dependent effect is rematching occurs when the SNR has a maximum Tat
lated to the membrane potential modulation amplitude, theztIn(D), Panels(b) and (d) of Fig. 18 show that, at low
same quantity, i.e., the optimal modulation period, was alsenodulation amplitudes, the mode of the SNR s close to one.
computed whenA was adjusted so as to maintalh’  As the modulation amplitude is increased, this local maxi-
= A7/ 1+ (Q7)? constant. The results are represented in thenum of the SNR disappeaiBigs. 18f), 18h)]. However, in
middle panel of Fig. 16. For low modulation amplitudes, thethese regimes, the SNR exhibits another maximum at larger
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FIG. 15. Left column: abscissa is the I1SI normalizedTbgdimensionless and ordinate is the ISI distributiog(t) in kilohertz. Middle

column: abscissa is angular frequeneyormalized by modulation angular frequen@yof the stimulation(dimensionless and ordinate is
F(w) (dimensionless Right column: abscissa t$1=27-r/w,fn normalized by the modulation periol (dimensionless and ordinate is the
SNR S(w) (dimensionlessfor fixed D=0.6 mV while varyingT. wfn is the mode of the PSDor equivalentlyF) without modulation.
Modulation amplitude iA=0 V/s (first row from top, A=0.01 V/s(second roy;, A=0.03 V/s(third row), andA=0.05 V/s(fourth row).
ParametersS,=20 mV, V,=0 mV, D=0.6 (mV)?, ©=0.1 V/s, 7=1/0.006 ms.
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18 - - - value ofD that leads to this maximal value varies little with
ol st : _____ R Ao03 _ A, however, the peak value itself increases with
i "~47005 ==
,./ ...................... S VI. DISCUSSION
14t S e ~
2 L et T e We considered the response of the LIFM to subthreshold
12 .-’ e, ] periodic stimulation in the presence of additive noise. We
___________ ~. used both time domain and frequency domain criteria for the
1 I evaluation of the response. Most of these criteria go through
Ry a maximum when either noise amplitude or modulation pe-
08 160 /|\ 2(')0 3(')0 200 riod are varied, thus di_splaying a “resonanceli_ke” hump
Period: T (ms) shaped curve. We examined whether these maxima occurred
12 . ' A,_o _ when some characteristic time scale of noise-induced firing
) e ~. A'=0.05 ——— matched the modulation period.
L1 |, N, A’=0.1 ===~ In the time domain, as i[®], we used the mode of the ISI
----------- ; 3 .l distribution in the absence of the modulation as the relevant

time scale for the noise-induced firing. In the frequency do-
main, we used the mode of the PSD.

These choices revealed time-scale matching for low
modulation amplitudes, in both time and frequency domains,
when the periodl was the tuning parameter. Furthermore,
they showed that taking into account the period-dependent

09 r

08 100 ’l\ 200 300 400 changes in the membrane potential oscillation amplitudes in-
500 Period: T (ms) creased the range of input amplitudes for which time-scale
matching was associated with the optimal response of the
. LIFM.
- 400 ¢ S | When the noiseD was the tuning parameter, time-scale
E Ry ] matching held only approximately. In the time domain, it
g 300 s A=) — | improved when the stimulation amplitude was increased,
ks i A A=001 — 1 while in the frequency domain, the response of the system
8 200 | y ﬁzg'gg T was more complex. Indeed, for low modulation amplitudes,
7 ’ ; the SNR was maximal for an optimal noise level close to the
100 | ;% ] one leading to time-scale matching. However, as the signal
7. . amplitude was increased, this maximum disappeared. For
100 200 300 400 500 these ranges of modulation amplitudes, the SNR presented a

Mode: t{ (D) (ms) maximum at a significantly lower noise intensity. In other

words, there are two types of noise-enhanced response in the
frequency domain: one for low modulation amplitudes at
Ordinates are SNRS (dimensionless Every graph in the upper .nct)lse Ie(;/.elts Closde Itot_tlme-sc?![edmatcfgllng, anq th'etoth(?tr. for
panel is depicted for fixedA, but in middle panel, A’ intermediate modulation amplitudes, at low noise intensities.

=A7/{1+(Q7)° is fixed instead ofA. The arrow on the abscissa Our numerical investigationgnot shown indicate that the
of both panels points ta,=136.5 ms. Lower panel: time-scale hump discovered by Plesser and Tanfk@ belongs to the

matching for endogenous periodic signal in frequency domain. Ab-Iatter class. . .
scissa ist! (D) =2m/wy(D) in milliseconds.wy,(D) is the value When the matching with the mode was far from perfect,

which gives the maximum of the PSD as a functionuofor fixed ~ OF deteriorated through the change of a parameter, such as
D. Ordinate is the optimal modulation peri@d in milliseconds. It ~ the modulation amplitude, we examined whether other noise-
gives the maximum of the SNR as a functionTofor ) for fixed ~ related time scales, such as the mean ISI in the time domain,
D. Parameters: u=0.1 V/s, 7=1/0.006 ms, S,=20 mV, V, did not provide better matching. However, in all cases, these
=0 mV. yielded less satisfactory results than the moghes shown).
Therefore, at this point, it is not possible to pin down a
simple explanation in terms of time-scale matching for
th(D), that is, at lower noise intensity. This second humpnoise-enhanced signal transmission when the modes did not
cannot be attributed to time-scale matching as it occurs fomatch, even approximately, the modulation period. These
small noise levels. need to be investigated on their own, and are probably de-
The two upper panels of Fig. 19 show the difference inpendent on the interplay between the time scales and
the shape of the SNR at low and lar@pit still subthreshold  amplitude-dependent factors.
modulation amplitudes. In both panels, the arrow indicates Our study revealed significant differences that appear
the noise level such thafn(D)zT. For A small, the SNR when considering the response of the system in time and
has a hump for som® near the arrow. Still, the SNR at frequency domains. The optimal modulation periods or noise
lower noise levels can be larger than this local maximumintensities that maximize the response of the system in time
Another hump appears at a lower noise level. The optimaand frequency domain are different. This stems from the fact

FIG. 16. The two upper panels: the SNR for fixed
=0.3(mV)2 Abscissae are modulation periddin milliseconds.
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FIG. 17. ISI distribution(left column and corresponding PSDight column for four different noise level® for four modulation
amplitudesA=0 V/s (first row from top, A=0.001 V/s(second row, A=0.01 V/s(third row), andA=0.05 V/s. Abscissae of left column:
ISI normalized byT (dimensionless ordinate of left column: the I1SI PDE(t) in kilohertz. Abscissae of right column: angular frequency

» normalized by stimulation angular frequenfy (dimensionless ordinate of right column: the PSP(w) in kilohertz. Parameterss,

=20 mV, Vo=0 mV, ©=0.1 V/s, 7=1/0.006 ms,T=27/0.05 ms.

that the criteria used to assess the regularity of the systemlsetween time domain and frequency domain criteria grow

response in time and frequency domains are sensitive to difvith the modulation amplitude.
ferent aspects of the spike train. Nevertheless, all criteria Furthermore, we introduced a method in order to compute

show that tuning the modulation period or the noise intensitythe 1SI distribution when the phase of the input is not reset at
can improve the response to weak stimuli. The differencegach discharge. The comparison between this case and the
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FIG. 18. Left column: the functioff () for four different noise level® for four modulation amplituded=0 V/s (first row from top,
A=0.001 V/s(second row, A=0.01 V/s(third row) andA=0.05 V/s. Abscissae: angular frequensynormalized by stimulation angular
frequencyQ (dimensionless ordinates:F(w) (dimensionless Right column: SNR for fixedl =27/0.05 ms while varyingD against
tf (D)/T with tf =27/w, wherew!, is the mode of the PSIor equivalentlyF) without modulation. Abscissa, normalized by the
modulation periodrl (dimensionless ordinate: the SNRS(w) (dimensionless The parameters are the same as in Fig. 17.

endogenous situation revealed that the latter could be used approximation is its numerical and analytical tractability.
a satisfactory approximation of the former for the evaluationThe computation of the cycle histogram confirms the validity
of time-scale matching, as long as the input amplitude iof the approximation for weak modulation and low noise
weak. This is in agreement wiff®]. The advantage of this levels where it displays a sharp peak. When the modulation
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— quantities such as the value of the interspike interval distri-
12 L Azza(:)o | bution, the signal-to-noise ratio, the input-output correlation,
transinformation, or coherence are maximized at some inter-
mediate noise level. Theoretical investigations using neuron
models, on the other hand, have helped in clarifying the con-
ditions under which such phenomena occur, as well as the
mechanisms underlying them. One issue of particular interest
has been whether the same putative mechanism that leads to
SR in weakly periodically modulated bistable systems,
namely, matching between the time scales of the noise-
induced hopping and the modulation period, is also respon-
sible for noise-enhanced signal transmission in sensory neu-
rons. Following[9,10], this work investigated this question
in the case of the LIFM. Our analysis suggests that time-
scale matching occurs when at low modulation amplitudes
the modulation period is tuned to maximize the system’s
response. It also holds, approximately, when the noise am-
plitude is tuned. Our investigations also showed that time-
scale matching is not the only process responsible for noise-
induced response improvement, as for intermediate
modulation amplitudes, the SNR is maximal at noise inten-
sities much lower than the ones leading to time-scale match-

ing.
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. o L CALCULATION
FIG. 19. Two upper panels: abscissa: noise interBity mil-

livolts; ordinate: the SNRS (dimensionless The ordinate of the | der t icall luate the int Is in the al
middle panel is the magnification of that of the upper panel. Arrows n oraer o numerically evaluate the integrals in the algo-

on both abscissae point B=0.32 (mV)? such that the mode of the fthm to calculate thetep PDF [15], we used time steps
PSD equajsT. Lower pane|: abscissa: noise intensi@ in smaller than bothr and T/50. Furthermore, for Iarg@, the
(millivolts)?; ordinate: the maximum valu@y, , in kilohertz, of the  time step was smaller thet/10 wheret,, was the mode of
PSD near}. All figures are the case for fixél=2/0.05. Param-  thetgp PDF. In order to set the time step appropriately while
eters: $=20 mV, V=0 mV, u=0.1V/s, 7=1/0.006 ms, T  changingT or D, we calculated first theér, PDF for the
=2m/0.05 ms. minimum T or maximumD and checked whether controls
computed with smaller steps yielded similar results. Then
this value was used throughout the computation for all values
iod is sl q h b h disch of TandD.
period is slow compared to the membrane charge-discharge To examine time-scale matching for the endogenous pe-

time, the peak is situated close 92, suggesting that the . .~ .

choice of this phase as the resetting phase gives satisfactor‘[f{)d'C S|gnal, cqlculatlons of thie, PDF were _stopped at th?

results. Numerical investigations confirm this point. .odglatlon period. However, t_o co_mpute either the ISI dis-

tribution for exogenous periodic signals or the PSD of the

spike train and the corresponding SNR for endogenous peri-

odic signals, calculations of thep, PDF were stopped when

the area below the curve d, that is, ffg(t)dt, became
Experimental investigations have shown that noise of aptarger than 0.9999. We estimated this area using the trapezoi-

propriate amplitude can improve signal transmission andlal method.

processing in sensory neurons. Some of these have reportedIn the computation of the PSD, we calculated the Fourier

SR-like phenomena, that is, when noise helps the detectiomansform of thetgp PDF using the fast Fourier transform

of weak signals. On the one hand, these studies show thatgorithm.

VIl. CONCLUSION
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